Усилитель радиочастоты назначение конденсаторов. Расчет входных цепей и урч радиоприемника

Усилители высоких частот (УВЧ) применяются для увеличения чувствительности радиоприемных средств - радиоприемников, телевизоров, радиопередатчиков. Помещенные между приемной антенной и входом радио или телеприемника, подобные схемы УВЧ увеличивают сигнал, поступающий от антенны (антенные усилители).

Использование таких усилителей позволяет увеличить радиус уверенного радиоприема, в случае радиостанций (приемо-передающих устройств -приемопередатчиков) либо увеличить дальность работы, либо при сохранении той же дальности уменьшить мощность излучения радиопередатчика.

На рис.1 приведены примеры схем УВЧ, часто используемых для увеличения чувствительности радиосредств. Значения используемых элементов зависят от конкретных условий: от частот (нижней и верхней) радиодиапазона, от антенны, от параметров последующего каскада, от напряжения питания и т.д.

На рис.1 (а) приведена схема широкополосного УВЧ по схеме с общим эмиттером (ОЭ). В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Необходимо напомнить, что в справочных данных на транзисторы приводятся предельные частотные параметры. Известно, что при оценке частотных возможностей транзистора для генератора, достаточно ориентироваться на предельное значение рабочей частоты, которое должно быть, как минимум, в два-три раза ниже предельной частоты, указанной в паспорте. Однако для ВЧ-усилителя, включенного по схеме ОЭ, предельную паспортную частоту уже необходимо уменьшать, как минимум, на порядок и более.

Рис.1. Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах.

Радиоэлементы для схемы на рис.1 (а):

  • R1=51к(для кремниевых транзисторов), R2=470, R3=100, R4=30-100;
  • С1=10-20, С2= 10-50, С3= 10-20, С4=500-Зн;

Значения конденсаторов приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Транзисторные каскады, как известно, включенные по схеме с общим эмиттером (ОЭ), обеспечивают сравнительно высокое усиление, но их частотные свойства относительно невысоки.

Транзисторные каскады, включенные по схеме с общей базой (ОБ), обладают меньшим усилением, чем транзисторные схемы с ОЭ, но их частотные свойства лучше. Это позволяет использовать те же транзисторы, что и в схемах с ОЭ, но на более высоких частотах.

На рис.1 (б) приведена схема широкополосного усилителя высокой частоты (УВЧ) на одном транзисторе, включенном по схеме с общей базой . В коллекторной цепи (нагрузка) включен LС-контур. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы для схемы на рис.1 (б):

  • R1=1к, R2=10к. R3=15к, R4=51 (для напряжения питания ЗВ-5В). R4=500-3 к (для напряжения питания 6В-15В);
  • С1=10-20, С2= 10-20, С3=1н, С4=1н-3н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например. КТ315. КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Катушка L1 содержит 6-8 витков провода ПЭВ 0.51, латунные сердечники длиной 8 мм с резьбой М3, отвод от 1/3 части витков.

На рис.1 (в) приведена еще одна схема широкополосного УВЧ на одном транзисторе , включенном по схеме с общей базой . В коллекторной цепи включен ВЧ-дроссель. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы:

  • R1=1к, R2=33к, R3=20к, R4=2к (для напряжения питания 6В);
  • С1=1н, С2=1н, С3=10н, С4=10н-33н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот СВ-, КВ-диапазона. Для более высоких частот, например, для УКВ-диапазона, значения емкостей должны быть уменьшены. В этом случае могут быть использованы дроссели Д01.

Конденсаторы типа КЛС, КМ, КД и т.д.

Катушки L1 - дроссели, для СВ-диапазона это могут быть катушки на кольцах 600НН-8-К7х4х2, 300 витков провода ПЭЛ 0,1.

Большее значение коэффициента усиления может быть получено за счет применения многотранзисторных схем . Это могут быть различные схемы, например, выполненные на основе каскодного усилителя ОК-ОБ на транзисторах разной структуры с последовательным питанием. Один из вариантов такой схемы УВЧ приведен на рис.1 (г).

Данная схема УВЧ обладает значительным усилением (десятки и даже сотни раз), однако каскодные усилители не могут обеспечить значительное усиление на высоких частотах. Такие схемы, как правило, применяются на частотах ДВ- и СВ-диапазона. Однако при использовании транзисторов сверхвысокой частоты и тщательном исполнении такие схемы могут успешно применяться до частот в десятки мегагерц.

Радиоэлементы:

  • R1=33к, R2=33к, R3=39к, R4=1к, R5=91, R6=2,2к;
  • С1=10н, С2=100, С3=10н, С4=10н-33н. С5=10н;
  • Т1 -ГТ311, КТ315, КТ3102, КТ368, КТ325 и т.д.
  • Т2 -ГТ313, КТ361, КТ3107 и т.д.

Значения конденсаторов и контура приведены для частот СВ-диапазона. Для более высоких частот, например, для КВ-диапазона, значения емкостей и инду ктивность контура (число витков) должны быть соответствующим образом уменьшены.

Конденсаторы типа КЛС, КМ, КД и т.д. Катушка L1 - для СВ-диапазона содержит 150 витков провода ПЭЛШО 0.1 на каркасах 7 мм, подстроечники М600НН-3-СС2,8х12.

При настройке схемы на рис.1 (г) необходимо подобрать резисторы R1, R3 так, чтобы напряжения между эмиттерами и коллекторами транзисторов стали одинаковыми и составили 3В при напряжении питания схемы 9 В.

Использование транзисторных УВЧ позволяет усиливать радиосигналы. поступающие от антенн, в теледиапазонах - метровые и дециметровые волны . При этом наиболее часто применяются схемы антенных усилителей, построенные на основе схемы 1(а).

Пример схемы антенного усилителя для диапазона частот 150-210 МГц приведена на рис.2 (а).

Рис.2.2. Схема антенного усилителя МВ-диапазона.

Радиоэлементы:

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470, R9=110, R10=75;
  • С1=15, С2= 1н, С3=15, С4=22, С5=15, С6=22, С7=15, С8=22;
  • Т1,Т2,ТЗ - 1Т311(Д,Л), ГТ311Д, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. Полосу частот данного антенного усилителя можно расширить в области низких частот соответствующим увеличением емкостей, входящих в состав схемы.

Радиоэлементы для варианта антенного усилителя для диапазона 50-210 МГц :

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470. R9=110, R10=75;
  • С 1=47, С2= 1н, С3=47, С4=68, С5=47, С6=68, С7=47, С8=68;
  • Т1,Т2,ТЗ - ГТ311А, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. При повторении данного устройства необходимо соблюдать все требования. предъявляемые к монтажу ВЧ-конструкций: минимальные длины соединяющих проводников, экранирование и т.д.

Антенный усилитель, предназначенный для использования в диапазонах телевизионных сигналов (и более высоких частот) может перегружаться сигналами мощных СВ-, КВ-, УКВ-радиостанций. Поэтому широкая полоса частот может быть неоптимальной, т.к. это может мешать нормальной работе усилителя. Особенно это сказывается в нижней области рабочего диапазона усилителя.

Для схемы приведенного антенного усилителя это может быть существенно, т.к. крутизна спада усиления в нижней части диапазона сравнительно низка.

Повысить крутизну амплитудно-частотной характеристики (АЧХ) данного антенного усилителя можно применением фильтра верхних частот 3-го порядка . Для этого на входе указанного усилителя можно применить дополнительную LС-цепь.

Схема подключения дополнительного LС-фильтра верхних частот к антенному усилителю приведена на рис. 2 (б).

Параметры дополнительного фильтра (ориентировочные):

  • С=5-10;
  • L - 3-5 витков ПЭВ-2 0,6. диаметр намотки 4 мм.

Настройку полосы частот и формы АЧХ целесообразно проводить с помощью соответствующих измерительных приборов (генератор качающейся частоты и т.д). Форму АЧХ можно регулировать изменением величин емкостей С, С1, изменением шага между витками L1 и числа витков.

Используя описанные схемотехнические решения и современные высокочастотные транзисторы (сверхвысокочастотные транзисторы - СВЧ-транзисторы) можно построить антенный усилитель ДМВ-диапазона Этот усилитель можно использовать как с У КВ-радиоприемником, например, входящим в состав УКВ-радиостанции, или совместно с телевизором.

На рис.3 приведена схема антенного усилителя ДМВ-диапазона .

Рис.3. Схема антенного усилителя ДМВ-диапазона и схема подключения.

Основные параметры усилителя ДМВ диапазона:

  • Полоса частот 470-790 МГц,
  • Усиление - 30 дБ,
  • Коэффициент шума -3 дБ,
  • Входное и выходное сопротивления - 75 Ом,
  • Ток потребления - 12 мА.

Одной из особенностей данной схемы является подача напряжения питания на схему антенного усилителя по выходному кабелю, по которому осуществляется подача выходного сигнала от антенного усилителя к приемнику радиосигнала - УКВ-радиоприемника, например, приемника УКВ-радиостанции или телевизора.

Антенный усилитель представляет собой два транзисторных каскада, включенных по схеме с общим эмиттером. На входе антенного усилителя предусмотрен фильтр верхних частот 3-го порядка, ограничивающий диапазон рабочих частот снизу. Это увеличивает помехозащищенность антенного усилителя.

Радиоэлементы:

  • R1 = 150к, R2=1 к, R3=75к, R4=680;
  • С1=3.3, С10=10, С3=100, С4=6800, С5=100;
  • Т1,Т2 - КТ3101А-2, КТ3115А-2, КТ3132А-2.
  • Конденсаторы С1,С2 типа КД-1, остальные - КМ-5 или К10-17в.
  • L1 - ПЭВ-2 0,8 мм, 2,5 витка, диаметр намотки 4 мм.
  • L2 - ВЧ-дроссель, 25 мкГн.

На рис.3 (б) приведена схема подключения антенного усилителя к антенному гнезду ТВ-приемника (к селектору ДМВ-диапазона) и к дистанционному источнику питания 12 В. При этом, как видно из схемы, питание на схему подается через коаксиальный кабель, используемый и для передачи усиленного ДМВ-радиосигнала от антенного усилителя к приемнику - УКВ-радиоприемнику или к телевизору.

Радиоэлементы подключения, рис.3 (б):

  • С5=100;
  • L3 - ВЧ-дроссель, 100 мкГн.

Монтаж выполнен на двустороннем стеклотекстолите СФ-2 навесным способом, длина проводников и площадь контактных площадок - минимальные, необходимо предусмотреть тщательное экранирование устройства.

Налаживание усилителя сводится к установке токов коллекторов транзисторов и регулируются при помощи R1 и RЗ, Т1 - 3.5 мА, Т2 - 8 мА; форму АЧХ можно регулировать подбором С2 в пределах 3-10 пФ и изменением шага между витками L1.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.

Усилители высоких частот (УВЧ) применяются для увеличения чувствительности радиоприемных средств - радиоприемников, телевизоров, радиопередатчиков. Помещенные между приемной антенной и входом радио или телеприемника, подобные схемы УВЧ увеличивают сигнал, поступающий от антенны (антенные усилители).

Использование таких усилителей позволяет увеличить радиус уверенного радиоприема, в случае радиостанций (приемо-передающих устройств -приемопередатчиков) либо увеличить дальность работы, либо при сохранении той же дальности уменьшить мощность излучения радиопередатчика.

На рис.1 приведены примеры схем УВЧ, часто используемых для увеличения чувствительности радиосредств. Значения используемых элементов зависят от конкретных условий: от частот (нижней и верхней) радиодиапазона, от антенны, от параметров последующего каскада, от напряжения питания и т.д.

На рис.1 (а) приведена схема широкополосного УВЧ по схеме с общим эмиттером (ОЭ). В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Необходимо напомнить, что в справочных данных на транзисторы приводятся предельные частотные параметры. Известно, что при оценке частотных возможностей транзистора для генератора, достаточно ориентироваться на предельное значение рабочей частоты, которое должно быть, как минимум, в два-три раза ниже предельной частоты, указанной в паспорте. Однако для ВЧ-усилителя, включенного по схеме ОЭ, предельную паспортную частоту уже необходимо уменьшать, как минимум, на порядок и более.

Рис.1. Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах.

Радиоэлементы для схемы на рис.1 (а):

  • R1=51к(для кремниевых транзисторов), R2=470, R3=100, R4=30-100;
  • С1=10-20, С2= 10-50, С3= 10-20, С4=500-Зн;

Значения конденсаторов приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Транзисторные каскады, как известно, включенные по схеме с общим эмиттером (ОЭ), обеспечивают сравнительно высокое усиление, но их частотные свойства относительно невысоки.

Транзисторные каскады, включенные по схеме с общей базой (ОБ), обладают меньшим усилением, чем транзисторные схемы с ОЭ, но их частотные свойства лучше. Это позволяет использовать те же транзисторы, что и в схемах с ОЭ, но на более высоких частотах.

На рис.1 (б) приведена схема широкополосного усилителя высокой частоты (УВЧ) на одном транзисторе, включенном по схеме с общей базой . В коллекторной цепи (нагрузка) включен LС-контур. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы для схемы на рис.1 (б):

  • R1=1к, R2=10к. R3=15к, R4=51 (для напряжения питания ЗВ-5В). R4=500-3 к (для напряжения питания 6В-15В);
  • С1=10-20, С2= 10-20, С3=1н, С4=1н-3н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например. КТ315. КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Катушка L1 содержит 6-8 витков провода ПЭВ 0.51, латунные сердечники длиной 8 мм с резьбой М3, отвод от 1/3 части витков.

На рис.1 (в) приведена еще одна схема широкополосного УВЧ на одном транзисторе , включенном по схеме с общей базой . В коллекторной цепи включен ВЧ-дроссель. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы:

  • R1=1к, R2=33к, R3=20к, R4=2к (для напряжения питания 6В);
  • С1=1н, С2=1н, С3=10н, С4=10н-33н;
  • Т1 - кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот СВ-, КВ-диапазона. Для более высоких частот, например, для УКВ-диапазона, значения емкостей должны быть уменьшены. В этом случае могут быть использованы дроссели Д01.

Конденсаторы типа КЛС, КМ, КД и т.д.

Катушки L1 - дроссели, для СВ-диапазона это могут быть катушки на кольцах 600НН-8-К7х4х2, 300 витков провода ПЭЛ 0,1.

Большее значение коэффициента усиления может быть получено за счет применения многотранзисторных схем . Это могут быть различные схемы, например, выполненные на основе каскодного усилителя ОК-ОБ на транзисторах разной структуры с последовательным питанием. Один из вариантов такой схемы УВЧ приведен на рис.1 (г).

Данная схема УВЧ обладает значительным усилением (десятки и даже сотни раз), однако каскодные усилители не могут обеспечить значительное усиление на высоких частотах. Такие схемы, как правило, применяются на частотах ДВ- и СВ-диапазона. Однако при использовании транзисторов сверхвысокой частоты и тщательном исполнении такие схемы могут успешно применяться до частот в десятки мегагерц.

Радиоэлементы:

  • R1=33к, R2=33к, R3=39к, R4=1к, R5=91, R6=2,2к;
  • С1=10н, С2=100, С3=10н, С4=10н-33н. С5=10н;
  • Т1 -ГТ311, КТ315, КТ3102, КТ368, КТ325 и т.д.
  • Т2 -ГТ313, КТ361, КТ3107 и т.д.

Значения конденсаторов и контура приведены для частот СВ-диапазона. Для более высоких частот, например, для КВ-диапазона, значения емкостей и инду ктивность контура (число витков) должны быть соответствующим образом уменьшены.

Конденсаторы типа КЛС, КМ, КД и т.д. Катушка L1 - для СВ-диапазона содержит 150 витков провода ПЭЛШО 0.1 на каркасах 7 мм, подстроечники М600НН-3-СС2,8х12.

При настройке схемы на рис.1 (г) необходимо подобрать резисторы R1, R3 так, чтобы напряжения между эмиттерами и коллекторами транзисторов стали одинаковыми и составили 3В при напряжении питания схемы 9 В.

Использование транзисторных УВЧ позволяет усиливать радиосигналы. поступающие от антенн, в теледиапазонах - метровые и дециметровые волны . При этом наиболее часто применяются схемы антенных усилителей, построенные на основе схемы 1(а).

Пример схемы антенного усилителя для диапазона частот 150-210 МГц приведена на рис.2 (а).

Рис.2.2. Схема антенного усилителя МВ-диапазона.

Радиоэлементы:

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470, R9=110, R10=75;
  • С1=15, С2= 1н, С3=15, С4=22, С5=15, С6=22, С7=15, С8=22;
  • Т1,Т2,ТЗ - 1Т311(Д,Л), ГТ311Д, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. Полосу частот данного антенного усилителя можно расширить в области низких частот соответствующим увеличением емкостей, входящих в состав схемы.

Радиоэлементы для варианта антенного усилителя для диапазона 50-210 МГц :

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470. R9=110, R10=75;
  • С 1=47, С2= 1н, С3=47, С4=68, С5=47, С6=68, С7=47, С8=68;
  • Т1,Т2,ТЗ - ГТ311А, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. При повторении данного устройства необходимо соблюдать все требования. предъявляемые к монтажу ВЧ-конструкций: минимальные длины соединяющих проводников, экранирование и т.д.

Антенный усилитель, предназначенный для использования в диапазонах телевизионных сигналов (и более высоких частот) может перегружаться сигналами мощных СВ-, КВ-, УКВ-радиостанций. Поэтому широкая полоса частот может быть неоптимальной, т.к. это может мешать нормальной работе усилителя. Особенно это сказывается в нижней области рабочего диапазона усилителя.

Для схемы приведенного антенного усилителя это может быть существенно, т.к. крутизна спада усиления в нижней части диапазона сравнительно низка.

Повысить крутизну амплитудно-частотной характеристики (АЧХ) данного антенного усилителя можно применением фильтра верхних частот 3-го порядка . Для этого на входе указанного усилителя можно применить дополнительную LС-цепь.

Схема подключения дополнительного LС-фильтра верхних частот к антенному усилителю приведена на рис. 2 (б).

Параметры дополнительного фильтра (ориентировочные):

  • С=5-10;
  • L - 3-5 витков ПЭВ-2 0,6. диаметр намотки 4 мм.

Настройку полосы частот и формы АЧХ целесообразно проводить с помощью соответствующих измерительных приборов (генератор качающейся частоты и т.д). Форму АЧХ можно регулировать изменением величин емкостей С, С1, изменением шага между витками L1 и числа витков.

Используя описанные схемотехнические решения и современные высокочастотные транзисторы (сверхвысокочастотные транзисторы - СВЧ-транзисторы) можно построить антенный усилитель ДМВ-диапазона Этот усилитель можно использовать как с У КВ-радиоприемником, например, входящим в состав УКВ-радиостанции, или совместно с телевизором.

На рис.3 приведена схема антенного усилителя ДМВ-диапазона .

Рис.3. Схема антенного усилителя ДМВ-диапазона и схема подключения.

Основные параметры усилителя ДМВ диапазона:

  • Полоса частот 470-790 МГц,
  • Усиление - 30 дБ,
  • Коэффициент шума -3 дБ,
  • Входное и выходное сопротивления - 75 Ом,
  • Ток потребления - 12 мА.

Одной из особенностей данной схемы является подача напряжения питания на схему антенного усилителя по выходному кабелю, по которому осуществляется подача выходного сигнала от антенного усилителя к приемнику радиосигнала - УКВ-радиоприемника, например, приемника УКВ-радиостанции или телевизора.

Антенный усилитель представляет собой два транзисторных каскада, включенных по схеме с общим эмиттером. На входе антенного усилителя предусмотрен фильтр верхних частот 3-го порядка, ограничивающий диапазон рабочих частот снизу. Это увеличивает помехозащищенность антенного усилителя.

Радиоэлементы:

  • R1 = 150к, R2=1 к, R3=75к, R4=680;
  • С1=3.3, С10=10, С3=100, С4=6800, С5=100;
  • Т1,Т2 - КТ3101А-2, КТ3115А-2, КТ3132А-2.
  • Конденсаторы С1,С2 типа КД-1, остальные - КМ-5 или К10-17в.
  • L1 - ПЭВ-2 0,8 мм, 2,5 витка, диаметр намотки 4 мм.
  • L2 - ВЧ-дроссель, 25 мкГн.

На рис.3 (б) приведена схема подключения антенного усилителя к антенному гнезду ТВ-приемника (к селектору ДМВ-диапазона) и к дистанционному источнику питания 12 В. При этом, как видно из схемы, питание на схему подается через коаксиальный кабель, используемый и для передачи усиленного ДМВ-радиосигнала от антенного усилителя к приемнику - УКВ-радиоприемнику или к телевизору.

Радиоэлементы подключения, рис.3 (б):

  • С5=100;
  • L3 - ВЧ-дроссель, 100 мкГн.

Монтаж выполнен на двустороннем стеклотекстолите СФ-2 навесным способом, длина проводников и площадь контактных площадок - минимальные, необходимо предусмотреть тщательное экранирование устройства.

Налаживание усилителя сводится к установке токов коллекторов транзисторов и регулируются при помощи R1 и RЗ, Т1 - 3.5 мА, Т2 - 8 мА; форму АЧХ можно регулировать подбором С2 в пределах 3-10 пФ и изменением шага между витками L1.

Литература: Рудомедов Е.А., Рудометов В.Е - Электроника и шпионские страсти-3.

10.1 Назначение и основные характеристики усилителя радиочастоты

Усиление на частоте принимаемого сигнала производится с помощью усилителей радиочастоты (УРЧ). Кроме усиления должна обеспечиваться и частотная избирательность. Для этого усилители содержат резонансные элементы межкаскадной связи: одиночные колебательные контуры или системы связанных контуров.

Диапазонные УРЧ должны иметь контуры с переменной настройкой. Они чаще всего выполняются одноконтурными.

В диапазонах умеренно высоких частот активным элементом усилителя служит электронная лампа или транзистор.

На СВЧ применяются усилители с лампами бегущей волны, на туннельных диодах, параметрические и квантовые усилители.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэффициенту шума, УРЧ могут содержать два или более каскадов.

Основные электрические характеристики усилителей:

1. Резонансный коэффициент усиления напряжения

В полосовых усилителях резонансный коэффициент усиления определяется на средней частоте полосы пропускания.

Коэффициентом усиления по мощности называют величину отношения мощности в нагрузке к мощности, потребляемой на входе усилителя:

где - активная составляющая входной проводимости усилителя; - активная составляющая проводимости нагрузки.

Нагрузкой УРЧ чаще всего служит вход следующего каскада усилителя или преобразователя частоты.

2. Избирательность усилителя показывает относительное уменьшение усиления при заданной расстройке. Иногда избирательность характеризуют коэффициентом прямоугольности.

3. Коэффициент шума, определяющий шумовые свойства усилителя.

4. Искажения сигнала в усилителе. В УРЧ искажения могут быть: нелинейные, вызываемые нелинейностью характеристики активного элемента, и линейные – амплитудно-частотные и фазо-частотные.

5. Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики, а также отсутствием склонности к самовозбуждению.

10.2 Схемы усилителя радиочастоты

В усилителях радиочастоты находят применение в основном две схемы включения активного элемента: с общим катодом (ОК) и общей сеткой (ОС) в ламповых усилителях; с общим эмиттером (ОЭ) и общей базой (ОБ) в транзисторных (биполярных) усилителях; с общим истоком (ОИ) и общим затвором (ОЗ) в каскадах на полевых транзисторах.

Усилители с общим катодом (эмиттером, истоком) в диапазонах километровых, гектометровых, декаметровых и метровых волн позволяют получить наиболее высокое усиление по мощности по сравнению с другими схемами включения.

Усилители с общей сеткой (базой, затвором) отличаются большей устойчивостью против самовозбуждения. Поэтому в дециметровом диапазоне волн ламповые усилители используются только в схеме с общей сеткой.

Транзисторные усилители с общей базой (затвором) используются и на более длинноволновых диапазонах.

Принципы построения и анализа резонансных усилителей идентичны для различных схем включения усилительных приборов, потому в основном будем рассматривать усилители с общим катодом (эмиттером, истоком).

По способу связи контура с активными элементами различают схемы с непосредственной, автотрансформаторной и трансформаторной связью.

Схемы с непосредственной связью контура используются при больших входных и выходных сопротивлениях активного элемента (например, в усилителях на электронных лампах и на полевых транзисторах).

Рисунок 10.1 Резонансный усилитель на полевом транзисторе

Рассмотрим схему резонансного усилителя на полевом транзисторе (рисунок 10.1).

Его отличие от резисторного в том, что в цепь стока включен колебательный контур, содержащий индуктивность и емкости , . Настраивается контур на резонансную частоту конденсатором переменной емкости .

На частоте резонанса контур имеет наибольшее эквивалентное активное сопротивление. При этом коэффициент усиления усилителя будет максимальным, называемым резонансным. На частотах, отличающихся от резонансной, эквивалентное сопротивление и коэффициент усиления уменьшаются, что определяет избирательные свойства усилителя.

Поскольку величина емкости конденсатора в 50 – 100 раз превышает максимальную емкость конденсатора , то резонансная частота контура определяется практически параметрами и .

В схеме применено последовательное питание стока через развязывающий фильтр и индуктивность (полевых транзисторах сток и исток можно поменять местами). Исходный режим на затворе определяется величиной падения напряжения тока истока на . Емкость устраняет отрицательную обратную связь по переменному току. Конденсатор разделительный. Резистор служит для подачи исходного напряжения на затвор.

Полевые транзисторы с изолированным затвором позволяют получить очень малую величину проходной емкости, обеспечивающую устойчивую работу усилителя даже на СВЧ, с показателями, лучшими, чем у электронных ламп.

Схемы с автотрансформаторной и трансформаторной связью контура позволяют устанавливать необходимую величину связи контура с активными элементами для достижения заданной избирательности и усиления, а также для повышения устойчивости работы усилителя.

Автотрансформаторная и трансформаторная схемы связи используются как в ламповых, так и в транзисторных усилителях, но особенно характерно их применение в усилителях на биполярных транзисторах, вследствие сравнительно малых входного и выходного сопротивлений у них даже на относительно невысоких частотах.

Рассмотрим автотрансформаторные и трансформаторные схемы связи на примере усилителей на биполярных транзисторах (рисунок 10.2, 10.3).

На рисунке10.2 приведена схема с двойной автотрансформаторной связью контура с транзисторами. Ее отличие от схемы рисунка 10.1 в том, что контур подключен к усилительным приборам с помощью отводов с коэффициентами трансформации и . Напряжение питания на коллектор подано через развязывающий фильтр и часть витков катушки индуктивности контура . Исходный режим и температурную стабилизацию обеспечивают с помощью резисторов . Емкость устраняет отрицательную обратную связь по переменному току. Конденсатор – разделительный, предотвращает попадание питающего напряжения коллектора в цепь базы.

Рисунок 10.2 Схема с двойной автотрансформаторной связью контура

На рисунке 10.3 приведена схема с трансформаторной связью.

Рисунок 10.3 Схема с трансформаторной связью

Контур имеет трансформаторную связь с коллектором транзистора данного каскада и автотрансформаторную со входом следующего. Трансформаторная связь конструктивно более удобна (более гибкая).

Общим для всех схем является двойное частичное включение контура. Полное включение можно рассматривать как частный случай, когда коэффициенты включения (трансформации) равны единице.

10.3 Обратные связи в усилителях радиочастоты

В усилителях в целом и в отдельных его каскадах всегда образуются цепи, создающие пути для прохождения усиливаемого сигнала с выхода на вход. Эти цепи создают обратные связи .

При сильной положительной обратной связи может наступить самовозбуждение и усилитель превратится в генератор незатухающих колебаний. Если из-за обратной связи усилитель не возбуждается, но близок к самовозбуждению, то его работа будет неустойчива.

При малейшем изменении параметров усилительного прибора, например из-за изменения напряжения источника питания, температуры, будут резко меняться и усиление и полоса пропускания усилителя. Поэтому к усилителю предъявляют требование устойчивости, под которым понимают не только необходимость отсутствия самовозбуждения, но главным образом постоянство его параметров в процессе эксплуатации.

Причины образования обратных связей в усилителях:

1. Наличие внутренней обратной проводимости в усилительных приборах, связывающей входные и выходные цепи каскадов.

2. Связь через общие источники питания нескольких каскадов усиления.

3. Индуктивные и емкостные обратные связи, возникающие между монтажными проводами, катушками и другими деталями усилителя.

Обратная связь в усилителях возможна через общие цепи питания, через внешние элементы схемы, через проводимость внутренней обратной связи активного элемента. Первые два вида обратной связи, в принципе, могут быть устранены рациональным построением схемы и конструкции усилителя.

Обратная связь через общий источник питания в многокаскадных схемах, где элементом связи служит его внутреннее сопротивление, является одной из важных причин неустойчивости усилителей.

Эти обратные связи ослабляются в нужной степени введением в усилитель соответствующих развязывающих фильтров, состоящих из резисторов и емкостей , и снижением внутреннего сопротивления источника питания для переменных токов (например, шунтированием его большой емкостью).

Вредные магнитные и емкостные обратные связи устраняются рациональной конструкцией усилителя и его монтажа и экранированием основных элементов входной и выходной цепи отдельных каскадов.

Внутренняя обратная связь , принципиально присущая усилительным приборам, является главной причиной неустойчивости усилителей. Поэтому ее наличие должно учитываться при расчете усилителей.

Рассмотрим влияние внутренней обратной связи. Внутренняя обратная связь в усилителе обусловлена обратной проводимостью .

На рисунке 10.4 приведена упрощенная принципиальная схема каскада усилителя с автотрансформаторным включением контура I во входную цепь и контура II в выходную цепь усилительного прибора.

Рисунок 10.4 К вопросу о влиянии внутрен­ней обратной связи

Предположим, что контуры I и II достаточно хорошо экранированы один от другого и в цепи питания включены блокирующие фильтры. В этом случае единственным источником обратной связи, которая может привести к самовозбуждению усилителя, будет проводимость усилительного прибора.

Наличие в усилительных приборах внутренней обратной связи через проводимость приводит к влиянию нагрузки и выходной проводимости усилительного прибора на его входную проводимость и изменяет ее характер.

10.4 Устойчивость работы усилителя радиочастоты

Наличие в усилительных приборах внутренней обратной связи приводит к взаимному влиянию контуров УРЧ (входного I и выходного II, рисунок4), а также к нестабильности в процессе эксплуатации основных параметров усилителя: коэффициента усиления, полосы пропускания, избирательности и др.

Причем комплексный характер проводимости и крутизны усилительного прибора приводит к сложной частотной зависимости этого влияния.

Во входной контур I вносится дополнительная проводимость, которая в общем случае имеет комплексный характер и вызывает искажение формы его частотной характеристики.

Эти искажения тем сильнее, чем больше коэффициент усиления усилителя.

Для нормальной и устойчивой работы УРЧ необходимо обеспечить малое изменение формы его частотной характеристики под влиянием внутренней обратной связи. Для этого необходимо определить максимальное значение коэффициента усиления каскада, при котором эти искажения еще не будут влиять на качество работы усилителя.

Подобные искажения частотной характеристики под влиянием внутренней обратной связи приводят к неустойчивости ее формы. Небольшие изменения параметров усилительного прибора, вызванные неизбежными в процессе эксплуатации изменением температуры или режима питания, приводят к изменению формы частотной характеристики.

Для того чтобы форма частотной характеристики входного контура и его полоса пропускания не сильно искажались, необходимо, чтобы вносимая обратной связью проводимость практически не влияла на полную проводимость входного контура.

Усилитель считается устойчивым (устойчиво работающим), если внутренняя обратная связь усилительного прибора незначительно изменяет форму его частотной характеристики и полосу пропускания.

Для количественной оценки степени устойчивости используется коэффициент устойчивости, который характеризует влияние внутренней обратной связи на искажение частотной характеристики входного контура.

Коэффициент устойчивости равен отношению

где - эквивалентное сопротивление, добротность и полоса пропускания входного контура без учета влияния внутренней обратной связи;

Эквивалентное сопротивления, добротность и полоса пропускания входного контура с учетом влияния внутренней обратной связи.

Таким образом, за критерий устойчивости принимается величина, которая показывает, во сколько раз изменяется добротность и полоса пропускания входного контура за счет влияния внутренней обратной связи.

Если обратные связи отсутствуют, то и .

Если же обратные связи полностью скомпенсировали потреи во входном контуре и усилитель самовозбуждается, то и .

Таким образом, коэффициент устойчивости изменяется от 0 до 1. Чем больше коэффициент устойчивости, тем дальше усилитель от состояния самовозбуждения, тем меньше искажение формы его частотной характеристики и изменение полосы пропускания.

Можно допустить изменение полосы пропускания входного контура под влиянием внутренней обратной связи на (10-20)%, для чего обычно принимают .

Многокаскадные усилители более склонны к самовозбуждению за счет проводимости , чем однокаскадные.

10.5 Искажения в усилителях радиочастоты

Усиливаемые УРЧ сигналы обычно имеют сложную форму, т.е. состоят из колебаний различных частот с различными амплитудами и фазами. УРЧ может вносить в усиливаемый сигнал следующие виды искажений: амплитудно-частотные, фазо-частотные и нелинейные.

В связи с тем, что полоса пропускания УРЧ обычно значительно шире, чем основного избирательного тракта промежуточных частот, то практически УРЧ амплитудно-частотных искажений в усиливаемый сигнал не вносит. Такие УРЧ практически не вносят и фазо-частотных искажений, поскольку они широкополосные и обычно не содержат более двух каскадов.

Исключение составляют УРЧ диапазона километровых волн (10-500 кГц).

Наибольшую опасность в УРЧ представляют нелинейные искажения. Если характеристика усилительного прибора нелинейна для области амплитуд полезного сигнала на входе УРЧ, то в нем могут возникать нелинейные искажения.

При большой амплитуде мешающих сигналов и нелинейности характеристики усилительного прибора УРЧ между полезным и мешающим сигналами возникает нелинейное взаимодействие.

В результате появляются нелинейные явления, такие, как:

Перекрестная модуляция;

Забитие полезного сигнала мешающим сигналом;

Взаимная модуляция (интермодуляция) между мешающими сигналами, частоты которых не совпадают с частотой настройки УРЧ, на продукты их взаимодействия попадают в полосу пропускания полезного сигнала или совпадают с частотами дополнительных каналов приема.

Перекрестная модуляция проявляется в том, что сигнал мешающей станции, значительно отличающийся по частоте от сигнала принимаемой станции (полезного), на частоту которой настроен УРЧ, существует на выходе УРЧ одновременно с полезным сигналом.

При прекращении работы станции, на частоту которой настроен УРЧ (пропадании полезного сигнала), мешающий сигнал полностью пропадает.

Перекрестная модуляция возникает в УРЧ при одновременном взаимодействии на его входе двух и более (полезного и мешающих) сигналов, из которых хотя бы один мешающий сигнал большой амплитуды.

Этот сигнал с большей амплитудой перемещает рабочую точку усилительного прибора на нелинейной части его характеристики со своей собственной частотой.

В результате происходит изменение крутизны характеристики усилительного прибора за счет действия сильного мешающего сигнала и перенос модуляции с мешающего сигнала на полезный.

При этом ухудшается различимость полезного сигнала, а при больших уровнях помехи прием становится невозможным.

Величина перекрестной модуляции не зависит от амплитуды полезного сигнала, поэтому ее нельзя уменьшить за счет увеличения амплитуды полезного сигнала.

В коротковолновом диапазоне уровень мешающих сигналов на входе УРЧ может достигать единиц и даже десятков вольт.

Забитием УРЧ помехой называют уменьшение усиления УРЧ и соответствующее ослабление полезного сигнала под действием мешающего сигнала близкой частоты и очень большой амплитуды.

Полосу частот, в которой наблюдается это явление, называют полосой забития.

Явление забития объясняется теми же причинами, как и перекрестная модуляция.

При очень больших амплитудах мешающих сигналов происходит не только модуляция крутизны, но и уменьшение ее среднего значения; может также резко возрастать постоянная составляющая входного тока усилительного прибора.

Взаимная модуляция (интермодуляция) происходит в усилителе радиочастоты при одновременном воздействии на его входе двух и более мешающих сигналов (например, частоты и ) большой амплитуды, выходящей за пределы линейного рабочего участка характеристики усилительного прибора.

В результате взаимодействия этих сигналов возникают комбинационные помехи вида:

Совпадающие с частотой настройки УРЧ;

Совпадающие с частотой зеркального или дополнительного каналов;

Совпадающие с промежуточной частотой приемника.

Составляющие особенно опасны, так как контур УРЧ настроен на эту частоту.

Одним из лучших методов борьбы со всеми рассмотренными видами нелинейных искажений является улучшение эффективной избирательности УРЧ.

Для этого необходимо повысить избирательность входной цепи, применять в первых каскадах УРЧ усилительные приборы с линейной характеристикой и не включать первые каскады УРЧ в систему АРУ.

ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ

11.1 Назначение, структурная схема и принцип работы преобразователей частоты

Преобразователем частоты называют устройство, осуществляющее перенос спектра радиосигнала из одной области частот в другую без изменения характера модуляции. Они являются частью супергетеродинного приемника. В результате преобразования получается новое значение частоты , называемой промежуточной . Частота может быть как выше, так и ниже частоты сигнала ; в первом случае происходит преобразование частоты вверх, во втором – вниз.

Как видно из диаграмм напряжений на входе и выходе ПЧ (рисунок 11.1), при преобразовании частоты закон модуляции (в данном случае – амплитудной) не нарушается, а изменяется только частота несущего колебания на выходе преобразователя.

Рисунок 11.1 Временные диаграммы напряжений на входе (а) и выходе ПЧ (б)

Спектр преобразованного колебания (рисунок 11.2) сместился по оси частот влево (для ); при этом характер спектра не изменился.

Рисунок 11.2 Спектр частот на входе (а) и выходе ПЧ (б)

Здесь - частота модулирующего колебания; и - несущие частоты для и .

Для преобразования частоты в радиоприемниках используются линейные цепи с периодически меняющимися параметрами .

Структурная схема преобразования частоты (рисунок 11.3) содержит преобразовательный элемент ПЭ , гетеродин Г и фильтр Ф .

Рисунок 11.3 Структурная схема ПЧ

Режим работы ПЭ периодически во времени меняется под действием напряжения гетеродина с частотой гетеродина . В результате изменяется крутизна ВАХ преобразовательного элемента, что приводит к преобразованию сигнала.

Положим, что к ПЭ со строго квадратичной ВАХ (рисунок 11.4) приложены напряжение гетеродина и некоторое начальное напряжение смещения ; при этом .

Под действием напряжения гетеродина рабочая точка ПЭ начинает периодически изменяться во времени и, как следует из рисунка 11.4, крутизна в рабочей точке также будет периодически меняться от до . Так как , то при квадратичной ВАХ зависимость крутизны от напряжения линейна.

Рисунок 11.4 Вольт-амперная характеристика ПЧ

Следовательно, при косинусоидальном напряжении крутизна изменяется также по косинусоидальному закону и содержит постоянную составляющую и первую гармонику. Тогда

где - постоянная составляющая крутизны ПЭ; - амплитуда первой гармоники крутизны ПЭ.

Ток на выходе ПЭ . Эта формула приближенная, поскольку она не учитывает ток сопротивления нагрузки.

Пусть на входе ПЭ действует сигнал , где - функции времени.

Подставив в выражение для тока значения и , получим

Используя правило перемножения косинусов, запишем

Согласно (11.1), ток на выходе ПЭ содержит составляющие трех частот: частоты сигнала , суммарной частоты и разностной частоты .

Из составляющих выходного тока используют только составляющую разностной частоты (полезная составляющая):

Фильтр на выходе преобразователя частоты выделяет только эту составляющую выходного тока, поэтому напряжение на выходе преобразователя определяется током .

Согласно (11.2), амплитуда полезной составляющей выходного тока пропорциональна амплитуде сигнала , следовательно, при преобразовании частоты закон изменения амплитуды сигнала (амплитудная модуляция) сохраняется.

Фаза тока также соответствует фазе исходного сигнала , т.е. при преобразовании частоты фазовая модуляция сохраняется.

Амплитуда тока зависит от амплитуды гармоники крутизны . При : ; (преобразования по частоте не происходит). Чем больше , тем больше , а следовательно, больше амплитуда тока и амплитуда напряжения на выходе преобразователя.

Преобразователи частоты подразделяют:

В зависимости от вида ПЭ: диодные, транзисторные, интегральные ;

В зависимости от числа ПЭ: простые (один ПЭ), балансные (два ПЭ), кольцевые (четыре ПЭ).

Если , то положение боковых полос сигнала относительно несущей частоты после преобразования частоты не изменяется (неинвертирующий преобразователь частоты ).

Если , то боковые полосы после преобразования меняются местами, нижняя становится верхней, и наоборот (инвертирующий преобразователь частоты ).

Выводы:

1. При преобразовании частоты закон модуляции входного напряжения не нарушается, а изменяется только несущая частота.

2. Для преобразования частоты используются линейные цепи с периодически меняющимися параметрами.

3. Под действием напряжения гетеродина периодически во времени меняется режим работы ПЭ, в результате чего меняется с частотой крутизна ПЭ. При этом ток на выходе ПЭ содержит помимо составляющей с частотой сигнала ряд комбинационных составляющих, одна из которых с частотой (обычно или ), выделяемая фильтром, создает напряжение на выходе преобразователя частоты.

11.2 Общая теория преобразования частоты

При анализе преобразователя частоты по аналогии с резонансными усилителями решают две задачи:

1) определяют выходное напряжение , для чего находят полезную составляющую тока промежуточной частоты, которая совпадает с резонансной частотой фильтра, после чего рассчитывают основные показатели преобразователя -–коэффициент усиления, АЧХ, ФЧХ и т.д.;

2) находят составляющую входного тока преобразователя на частоте сигнала , создающую нагрузку для источника сигнала.

Анализ проведем при следующих допущениях:

1) полагаем, что на ПЭ (рисунок 11.3) действуют три гармонических напряжения:

Напряжения на входном и выходном фильтрах создаются входными и выходными токами различных комбинационных частот. Обычно эти напряжения малы, поскольку сопротивления фильтров для комбинационных частот незначительны;

2) считаем ; , т.е. полагаем ПЭ работающим в линейном режиме относительно напряжения сигнала ; относительно напряжения гетеродина ПЭ всегда работает в нелинейном режиме;

3) ПЭ является безынерционным устройством, не содержащим емкостных и индуктивных элементов; поэтому его ток не зависит от производных или интегралов приложенных к ПЭ напряжений. Для безынерционного ПЭ входной и выходной токи определяются статическими ВАХ:

Составляющая тока не содержит полезной составляющей тока с частотой

Преобразование частоты возможно на любой гармонике крутизны:

Из этих значений используется только одно.

Если при , то преобразование частоты называется простым .

Если при , то преобразование частоты называют комбинационным ; оно возможно из-за появления гармоник крутизны.

Таким образом, из всех составляющих выходного тока только одна с частотой является полезной:

где соответствует (только при составляющая тока имеет промежуточную частоту).

В выражении (11.8) первое слагаемое характеризует преобразование частоты, второе – реакцию фильтра.

Крутизна прямого преобразования по определению крутизны при . Согласно (11.8),

где - коэффициент пропорциональности между амплитудой выходного тока промежуточной частоты и амплитудой напряжения сигнала на входе при короткозамкнутом выходе ПЭ.

Внутренняя проводимость преобразователя частоты по определению, при . Согласно (7.8), внутренняя проводимость преобразователя равна постоянной составляющей внутренней проводимости ПЭ:

Внутренний коэффициент усиления преобразователя

С учетом принятых обозначений

11.3 Частотная характеристика преобразователя

Под АЧХ преобразователя частоты понимают зависимость его коэффициента передачи от частоты входного сигнала при фиксированной частоте гетеродина; частота сигнала изменяется в широких пределах.

Пусть в качестве фильтра преобразователя используется одиночный резонансный контур, настроенный на частоту (рисунок 11.5).

Рисунок 11.5 Эквивалентная схема ПЧ

С изменением при фиксированном значении промежуточная частота меняется.

Рисунок 11.6 Графические зависимости

Графические зависимости , построенные согласно (7.7), показаны на рисунке 11.6,а . При ; при и т.д.

Таким образом, различным значениям соответствуют различные значения , причем значение зависит от номера гармоники крутизны, на которой происходит преобразование частоты. Напряжение на выходном контуре преобразователя появится только при выполнении условия резонанса, т.е. при .

Согласно рисунок6а , условие резонанса выполняется не на одной частоте сигнала, а на нескольких частотах ; следовательно, АЧХ преобразователя имеет несколько подъемов. Каждому подъему соответствует определенная полоса пропускания, через которую на выход приемника могут проходить составляющие спектра сигнала и помех. Такие полосы пропускания называют каналами приема . Каждый канал соответствует своей частоте сигнала. АЧХ преобразователя показана на рисунок60б , форма АЧХ каждого канала зависит от вида фильтра ПЧ.

11.4 Диодные преобразователи частоты

УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА

Наименование параметра Значение
Тема статьи: УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА
Рубрика (тематическая категория) Связь

Усиление принимаемых радиосигналов в приемном устройстве осу­ществляется в его преселœекторе, ᴛ.ᴇ. на радиочастоте, и после преоб­разователя частоты - на промежуточной частоте. Соответственно раз­личают усилители радиочастоты (УРЧ) и усилители промежуточной час­тоты (УПЧ). В этих усилителях, вместе с усилением должна обеспечивать­ся частотная избирательность приемника. Для этого усилители содер­жат резонансные цепи: одиночные колебательные контуры, фильтры на связанных контурах, различные типы фильтров сосредоточенной избирательности. Усилители радиочастоты с переменной настройкой обыч­но выполняют с избирательной системой, аналогичной примененной во входной цепи приемника, чаще всœего это одноконтурные избирательные цепи.

В усилителях промежуточной частоты находят применение сложные типы избирательных систем, обладающие АЧХ близкими к прямоугольным, такие, как электромеханические фильтры (ЭМФ), кварцевые фильтры (КФ), фильтры на поверхностных (объемных) акустических волнах (ПАВ, ПОВ) и др.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэф­фициенту шума, УРЧ могут содержать до трех каскадов.

К числу базовых электрических характеристик усилителœей отно­сятся:

1.Резонансный коэффициент усиления напряжения .

На сверхвысоких частотах (СВЧ) чаще применяют понятие коэффициента усиления по мощнос­ти,где - активная составляющая входной проводимости усилителя; - активная составляющая проводимость нагрузки.

2.Частотная избирательность усилителя показывает относитель­ное уменьшение усиления при заданной расстройке.

Иногда избирательность характеризуют коэффициентом прямоугольности, к примеру, .

3.Коэффициент шума определяет шумовые свойства усилителя.

4.Искажения сигнала в усилителœе : амплитудно-частотные, фазо­вые, нелинœейные.

5.Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики (обычно К о и АЧХ), а также отсутствие склонности к самовозбуждению.

На рис.1-3 приведены основные схемы УРЧ, а на рис.4 схе­ма УПЧ с фильтром сосредоточения избирательности (ФСИ) в виде электромеханического фильтра.

Рис.1. УРЧ на полевом транзисторе

Рис.2. УРЧ на биполярном транзисторе

Рис.3. УРЧ с индуктивной связью с избирательной системой

Рис.4. УПЧ с фильтром сосредоточенной избирательности

В усилителях радиочастоты и промежуточной частоты, в основном применяют два варианта включения усилительного прибора: с общим эмиттером (общим истоком) и каскодную схему включения транзисторов.

На рис.1 приведена схема усилителя на полевом транзисторе с общим истоком. В цепь стока включен колебательный контур L К С К. Контур настраивается конденсатором С К (может применяться для нас­тройки контура варикап или варикапная матрица).

В усилителœе применено последовательное питание стока через фильтр R3C3 . Напряжение смещения на затворе VT1 определяется падением напряжения от тока истока на резисторе R2 . Резистор R1 является сопротивлением утечки транзистора VT1 и служит для передачи напряжения смещения на затвор транзистора.

На рис. 2 приведена аналогичная схема УРЧ на биполярном тран­зисторе. Здесь применено двойное неполное включение контура с транзисторами VT1, VT2,что позволяет обеспечить крайне важно е шунти­рование контура со стороны выхода транзистора VT1и со стороны вхо­да транзистора VT2. Напряжение питания на коллектор транзистора подано через фильтр R4C4 ичасть витков катушки контура L К. Режим по постоянному току и температурная стабилизация обеспечивается с помощью резисторов R1,R2 и R3. Емкость С2 устраняет отрицательную обратную связь по переменному току.

На рис. 3 показана схема с трансформаторной связью контура с коллектором транзистора и автотрансформаторной связью со входом следующего каскада. Обычно, в данном случае, применяют, "удлинœенную" настройку контура (см. лаб. работу №1).

На рис. 4 представлена схема каскада УПЧ с ФСИ, выполненного на микросхеме 265 УВЗ. Микросхема представляет собой каскодный усилитель ОЭ - ОБ.

Усилители промежуточной частоты обеспечивают основное усиление и селœективность приемника по сосœеднему каналу. Их важной особенностью является то, что они работают на фиксированной промежуточ­ной частоте и имеют большое усиление, порядка.

При использовании различных типов ФСИ, требуемое усиление УПЧ достигается применением широкополосных каскадов.

Общим для всœех схем является двойное неполное включение из­бирательной системы. (Полное включение можно рассматривать как частный случай, когда коэффициенты трансформации m и n равны единице). По этой причине для анализа можно использовать одну обобщенную эквивален­тную схему замещения усилителя (см. рис.5).

Рис.5. Обобщенная эквивалентная схема резонансного усилителя

На схеме транзистор со стороны выхода заменен эквивалентным генератором тока с параметрами, и током, а со стороны входа следующего каскада прово­димостью, . Резистор утечки R4 (рис.1) или делитель (рис.2) заменены проводимостью (или).

Обычно сумму проводимостей считают проводимостью нагрузки , ᴛ.ᴇ.

Анализ эквивалентной схемы позволяет получить всœе расчетные соотношения для определœения характеристик каскада .

Так, комплексный коэффициент усиления каскада определяется выражением

эквивалентная резонансная проводимость контура;

Обобщенная расстройка контура.

Из данного соотношения легко определить модуль коэффициента

усиления

и резонансный коэффициент усиления каскада УРЧ

Резонансный коэффициент усиления достигает своего максималь­ного значения при одинаковом шунтировании контура со стороны выхо­да активного прибора и со стороны нагрузки (входа следующего каскада), ᴛ.ᴇ. когда

Приведенные соотношения позволяют получить уравнение резонан­сной кривой усилителя. Так, при малых расстройках, . Откуда, полоса пропускания УРЧ поуровню 0,707 (- 3дБ) равна

Резонансный коэффициент усиления одноконтурного каскада УПЧ такой же, как и у одноконтурного УРЧ

Для УПЧ с двухконтурным полосовым фильтром резонансный коэф­фициент усиления каскада определяется выражением

где - фактор связи между контурами, а - коэффициент связи между контурами.

Коэффициент усиления (по напряжению) УПЧ с любым ФСИ при сог­ласовании фильтра на входе и выходе должна быть рассчитан по формуле

Здесь, - характеристические (волновые) сопротивления ФСИ по входу и выходу соответственно;

Коэффициент передачи фильтра в полосœе прозрачности (пропускания).

В том случае, в случае если известно затухание фильтра в полосœе проз­рачности вдецибелах, то

Коэффициенты включения m и n вычисляются из условия согласо­вания фильтра на входе и выходе

Резонансная характеристика каскада УПЧ с ФСИ полностью опреде­ляется кривой изменения коэффициента передачи ФСИ от частоты. Отдельные точки резонансной кривой ФСИ задаются в справочниках.

Коэффициент усиления избирательного усилителя не должен превышать величины коэффициента устойчивого усиления. В общем случае, можно оценить из выражения

В случае если в качестве усилительного элемента используется каскодная схема, то крайне важно подставить соответствующие значения проводимостей для каскодной схемы к примеру, для схемы ОЭ – ОБ

В случае использования полевых транзисторов активной составляющей проводимости можно пренебречь и

УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА - понятие и виды. Классификация и особенности категории "УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА" 2017, 2018.

Усилители радиочастоты похожи на другие усилители. Они отличаются, главным образом, диапазоном рабочих частот, занимающим область от 10 до 30 мегагерц. Существуют два класса усилителей радиочастоты: перестраиваемые и неперестраиваемые. Основной функцией неперестраиваемого усилителя является усиление, а его амплитудно-частотная характеристика должна занимать как можно более широкий диапазон радиочастот. В перестраиваемом усилителе высокое усиление должно достигаться в узкой области частот или на отдельной частоте. Обычно, когда говорят об усилителях радиочастоты, подразумевают, что они являются перестраиваемыми, если не оговорено другое.

В радиоприемных устройствах усилители радиочастоты служат для усиления сигнала и выделения сигнала, соответствующей частоты. В передающих устройствах усилители радиочастоты служат для усиления сигнала на определенной частоте перед его подачей в антенну. В основном, приемные усилители радиочастоты являются усилителями напряжения, а передающие усилители радиочастоты являются усилителями мощности .

В приемных цепях усилитель радиочастоты должен обеспечивать достаточное усиление приемного сигнала, обладать низким собственным шумом, обеспечивать хорошую избирательность и иметь плоскую амплитудно-частотную характеристику на выбранных частотах.

На рисунке изображен усилитель радиочастоты, используемый в радиоприемнике с амплитудной модуляцией.

Конденсаторы C 1 и С 4 настраивают антенну и выходной трансформатор Т 1 на одну и ту же частоту. Входной сигнал с помощью индуктивной связи подается на базу транзистора Q 1 . Транзистор Q 1 работает, как усилитель класса А. Конденсатор С 4 и трансформатор Т 1 обеспечивают высокое усиление по напряжению на резонансной частоте для цепи коллекторной нагрузки. Трансформатор имеет отвод для обеспечения хорошего согласования импедансов с транзистором.

Усилитель радиочастоты , используемый в телевизионном высокочастотном тюнере.

Цепь настраивается катушками индуктивности L 1A ; L 1B и L 1C . При повороте ручки переключателя каналов в цепь включается новый набор катушек. Это обеспечивает усиление в необходимой полосе частот для каждого канала. Входной сигнал попадает в перестраиваемую цепь, состоящую из L 1A , С 1 и С 2 . Транзистор Q 1 работает, как усилитель класса А. Выходная коллекторная цепь представляет собой двойной перестраиваемый трансформатор. Катушка L 1B настраивается конденсатором С 4 , а катушка — L 1C конденсатором С 7 Резистор R 2 и конденсатор С 6 образуют развязывающий фильтр, предотвращающий попадание радиочастот в блок питания и их взаимодействие с другими цепями.

В радиоприемниках с амплитудной модуляцией входной радиосигнал преобразуется в сигнал постоянной промежуточной частоты. После этого используется усилитель промежуточной частоты с фиксированной настройкой для увеличения уровня сигнала до необходимой величины. Усилитель промежуточной частоты — это одночастотный (узкополосный) усилитель . Обычно для усиления сигнала до необходимого уровня используются два или три каскада усиления промежуточной частоты. Чувствительность приемника определяется усилением усилителя промежуточной частоты. Чем выше усиление, тем выше чувствительность. На рисунке показан типичный усилитель промежуточной частоты радиоприемника амплитудномодулированных сигналов.

Промежуточная частота равна 455000 герц.

На рисунке изображен усилитель промежуточной частоты телевизионного приемника.

В таблице, сравниваются частоты радио и телевизионных приемников.